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J. Phys.: Condens. Matter 2 (1990) 8813-8825. Printed in the UK 

Density- functional approach for superionic conductors: 
effects of host-lattice deformations 

H E Romant and W Dietericht 
t Institut fur Theoretische Physik, Universitat Hamburg, Jungiusstr. 9, D-2000 Ham- 
burg 36, Federal Republic of Germany 
4 Fakultat fi Physik, Universitat Konstanz, D-7750 Konstanz, Federal Republic of 
Germany 

Abstract. By means of classical density-functional theory we study the density 
distribution of mobile A g t  ions in a-AgI-type superionic conductors, taking into 
account the thermal fluctuations in the anion host lattice. Our model is based on 
an expansion of the ‘external’ potential U(.) acting on the catiomcomponent up to 
second order in the displacements of anions, the latter being regarded as Einstein 
oscillators. Calculated density profiles are compared with molecular-dynamics sim- 
ulations. For a-AgI the agreement is almost quantitative. In the case of PAg2S  
the inclusion of anion vibrations leads to significant corrections in the temperature 
dependent profiles. 

1. Introduction 

The quantitative understanding of structural and electrical properties of solid ionic 
conductors in terms of interionic forces is an important problem in both materials sci- 
ence and statistical physics, which has  so far only been solved in special cases. Most 
of the previous studies are based on the molecular dynamics technique (for a review 
see for example Vashishta 1986, Gillan 1983). On the other hand, it has recently been 
shown that the equilibrium density distribution p ( ~ )  of the diffusing component in 
certain superionic conductors can be calculated from interionic potentials in a rather 
simple way by means of density-functional methods (Roman and Dieterich 1986, Billi 
et  a1 1988). The physical interest in that quantity is due to  the fact that it provides 
a certain link between structural and transport properties. In fact, knowledge of the 
distribution p ( ~ )  implies information on conduction pathways and on effective poten- 
tial barriers entering the transport process (Boughaleb and Ratner 1989, Thomas and 
Dieterich 1986). In those density-functional calculations it turned out that a second- 
order expansion of the contribution of interactions to  the free energy functional with 
respect to  density-inhomogeneities leads to an acceptable representation of the exper- 
imentally measured density-profiles. It also accounts for the increasing importance 
of Ag+-Ag+ correlations in the series of BCC materials a-AgI, P-Ag,SI and P-Ag,S. 
That type of approximation has also been tested before (Roman and Dieterich 1985) 
by comparison with the exactly solvable case of an inhomogeneous one-dimensional 
fluid of hard-core particles (Percus 1976). 

Density-functional investigations for a-AgI-type materials performed so far imply 
the assumption of a rigid anion cage, which reduces the problem to calculating the 
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8814 H E Roman and W Die te r i ch  

cation density in the presence of a static cage potential with the symmetry of the lat- 
tice. In principle, however, applying that method to the coupled system of cations and 
anions in superionic conductors would require a two-component formulation. In this 
paper we pursue this direction and extend our previous treatment by including host 
lattice deformations in the simplest possible way. Since we are basically interested in 
high-temperature properties, i.e. in temperatures larger than the Debye temperature, 
we disregard any detailed lattice-dynamical aspects and simply represent the anions as 
Einstein oscillators. Clearly, the inclusion of anion displacements is closely related to 
the problem of screening within the inhomogeneous, correlated cation-fluid. In fact it 
turns out that a proper treatment of screening is crucial in obtaining even the correct 
order of magnitude of density changes due to cage-potential perturbations. By using 
a second-order expansion in the anionic displacements we obtain the density P ( T )  in 
the form 

where p O ( ~ )  is the result for a rigid anion cage. The quantity (u?J denotes the mean- 
square displacement of anions which is the only parameter of the present model. The 
function A(?) is calculated from the same interionic potentials that have been em- 
ployed in previous molecular dynamics (MD) studies (Vashishta and Rahman 1978, 
Vashishta e2 a1 1985) and also in our previous calculations of pO(~). It turns out that 
inclusion of host lattice deformations does improve the overall agreement of the calcu- 
lated density profiles with MD studies, in particular with respect to  their temperature 
dependence. 

In section 2 we outline the method and describe some additional details of our 
previous work within the rigid lattice approximation. Then in section 3 we turn to  
the problem of a deformable lattice and derive the self-consistency equations for the 
first-order and second-order changes in density relative to po(r). These are solved 
numerically for the case of a-AgI and /?-Ag,S. We conclude with some final comments 
in section 4. 

2. Density-functional theory: rigid-lattice approximation 

Let us consider a superionic conductor such as a-AgI. It is composed of two subsys- 
tems: the Ag t  ions which constitute the mobile component responsible for the high 
ionic conductivity of the system, and the I- ions which form a BCC lattice structure. 
Early structural investigations of a-AgI by Strock e t  a1 (1934) have suggested that 
Agt  ions are randomly distributed over some crystallographic locations in the unit 
cube as shown in figure 1. From more recent diffraction experiments Cava e2 a1 (1980) 
have determined the distribution of mobile ions in terms of the one-particle density 
p ( ~ )  which is a periodic function with the periodicity of the lattice. Clearly, due to 
short-range repulsive forces, P ( T )  -+ 0 near an iodine ion. On the other hand, P ( T )  is 
appreciably delocalized along certain channels, which are interpreted as the dominant 
conduction paths. These are the t-M-t and the t-C-t paths (see figure 1) in the cases 
of a-AgI and P-Ag,S, respectively. 

Let us now outline the calculation of the equilibrium density p O ( r )  of the fluid- 
like component under the assumption that host lattice ions are held fixed in their 
lattice positions. The problem is thus reduced to study the equilibrium properties 
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Figure 1. Structure of superionic a-AgI.  The large circles are iodine ions in a BCC 
array. Two Ag+ ions are distributed at random over 42 crystallographic locations in 
the unit cube: 12 t (tetrahedral) sites (m), 24 M (threefold coordinated) sites (O), 
and 6 C (octahedral) sites ( A ) ,  (after Strock 1934). The Ag+ ions preferentially 
occupy the t-sites where the potential energy attains its minimum. 

of a non-uniform classical one-component fluid. This can be achieved within the 
classical version of density-functional theory (DFT), originally introduced to study 
the inhomogeneous electron gas (Hohenberg and Kohn 1964). The starting point of 
the classical DFT is the thermodynamic potential as a functional of the density p ( t )  
(Mermin 1965, Evans 1979, Baus 1987). For our purposes it is convenient to  study 
the grand free-energy functional R[p], 

where v ( t )  is the external potential, F [ p ]  the free energy functional and p the chemical 
potential. Within DFT, the equilibrium density p ( t )  is obtained by minimising (2) with 
respect to p. At the minimum, reduces to the grand potential and F[p]  coincides 
with the ‘intrinsic’ Helmholtz free energy of the system. 

To proceed further we write F[p] as 

F ~ I  = P-’ / d 3 r p ( ~ ) ( l o g ( ~ 3 p ( ~ ) )  - 1) + a i n t ~  (3) 

where we have separated the ideal gas term from the interaction part aint[p] of F .  
Here P-’ = kBT and A = h/(27??dBT)’/2.  The exact form of aint[p] is not known in 
general and we need to  resort to some approximation. To this end, we expand Qint[p] 
in powers of Ap( t )  = p ( t )  - pR, where pR is the density of a uniform reference fluid. 
The value of p R  can be taken equal to the average density 7 of mobile ions in the unit 
cell, which is an input parameter of the theory. Keeping terms up to  second order in 
Ap, the following approximate expression for Qin,[p] is obtained (see e.g. Evans 1979), 

where 
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is the direct correlation function of the uniform reference fluid, which is assumed to  
be known. Using (2) and (3), the equilibrium density satisfies the exact equation 

logp(T) = - logh3+P(p-v( r ) ) -~- - .  6% [PI 
6P 

The last term in (6) can be evaluated with the help of (4). Thus, 

Applying (6) t o  the uniform reference state with zero potential, we obtain 

where jT is the chemical potential of the reference state. Now we insert (7) and (8) 
into (6) to obtain 

p ( T )  = Po exp[-~+) + J d3p' c0(T - T I ,  i j ) ( p ( T ' >  - P)I  (9) 

where po = Texp[P(p - p)]. The value of (p - p) can be obtained within the present 
theory by requiring that the average density determined from (9) be consistent with 
the input value p .  

Equation (9) is a non-linear integral equation for P ( T )  which we solve self- 
consistently such that p ( t )  ---* 7, p -+ ji if .(.) -+ 0. Clearly, if p I v ( ~ ) l  << 1 for 
all T ,  then AP(T) is easily obtained from linear response theory. This, however, is not 
the case for a superionic conductor and the full non-linearity of (9) needs to be taken 
into account. 

The range of validity of (9) in cases ~ I v ( T ) ~  > 1 has been tested against an exactly 
solvable model (Percus 1976) of a one-dimensional system of hard-core particles sub- 
ject to  a periodic potential (Roman and Dieterich 1985). There we have found that 
(9) works reasonably well even in cases of fairly large potential strengths. From this 
we conclude that (9) should almost quantitatively account for density variations in 
a-AgI-type ionic conductors at  least in the regions of interest close to the conduction 
paths. 

In order to  solve for P ( T )  we first transform the integral in (9) into a sum over 
reciprocal lattice vectors G of the host-lattice. We thus have 

(10) 1 dT)  = pOexP -pV(.) + PGCO(G,p)eiG" ( G#O 

with Fourier coefficients pG of the density and the Fourier transform Co(k,F) of the 
direct correlation function, evaluated at  IC = G. Note that the term G = 0 does not 
appear in (10). 

The lattice potential V ( T )  is determined by the interaction between mobile and 
host-lattice ions. Assuming effective pairwise potentials and denoting by Rk the lattice 
positions of counter ions X, we write 
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and 
e2 H+x 1 e2 VAgx(r) = -Z z - + - - -(a+z; + aXz:)F;i. 

+ x r  rn 2 
Here Z+, 2, are effective ionic charges, H+, = AX(u++uX)n where Ax is a constant, 
U+, ux are effective ionic diameters, and &+,aX are effective polarizabilities of the ions. 
The units of length and energy are A and e2 A-' = 14.4 eV, respectively. The Coulomb 
contribution in (11) is obtained using the Ewald method and requires the formal 
introduction of a neutralizing uniform background of positive charge. This positive 
background is however compensated by a negative uniform background required for 
the solution of the direct correlation function as discussed next. 

We specify now the direct correlation function C,(T - ~ ' , j j )  to  be used in (10). 
Since one expects the Coulomb interaction between Ag+ ions to  be the dominant 
one, we choose as a model for the uniform Ag+ fluid the classical one-component 
plasma (COCP). The COCP is a system of identical point charges embedded in a rigid 
neutralizing background and is characterized by the dimensionless plasma parameter 
I' = /3Z:e2/d,  where d = ( 4 ~ 7 / 3 ) - ' / ~ .  Analytical results for the direct correlation 
function of the COCP have been obtained within the rescaled mean spherical approxi- 
mation (MSA) (Gillan 1974, see also Chaturvedi et a1 1981). The MSA predictions for 
the structure of the cocp (e.g. the radial distribution function g(r)) agree well with 
computer simulation data at  high values of I' (> lo) ,  where the strong Coulomb repul- 
sion prevents particles from approaching each other closely. The plasma parameters 
corresponding to the superionic conductors a-AgI and P-Ag2S studied in this work 
fall in the high-I' regime as displayed in table 1. We also note that for these r-values 
the effective hard core-diameter in the rescaled MSA is larger than the ionic diameter 
U+, which a posteriori justifies the application of the COCP to  the system of cations. 

Table 1. Values of the input parameters used in the present work for a-AgI and 
P-AgZS. a denotes the lattice constant, T the temperature, 8 the number of A g t  ions 
in the unit cell and r the COCP parameter. For other parameters see equation (12). 
(Data for a-AgI from Vashishta and Rahman 1978, for PAg2S from Vashishta e t  al 
1985.) 

Ai31 AI32 s 
a (4 5.086 4.858 

430 464 
8 2 4 
zt 0.6 0.45 

"t (4 0.63 0.61 

T (K) 

ZX 0.6 0.9 

"X (4 2.2 2.1 
a t  (A3) 0 0 
ax (A3) 6.52 6.52 
n 7 7 
Ax (e2 %.-I) 0.01231 0.01502 
r 55.9 38.4 

The next step towards the solution of (10) consists in using a simple and accurate 
parametrization of P ( T )  for the purpose of evaluating its Fourier coefficients p o .  A 
useful representation of the density is in terms of Gaussians, centred at suitable po- 
sitions in the unit cube, since in this case the Fourier coefficients can be calculated 
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analytically. The minimum number of Gaussians and their positions required to ob- 
tain an accurate representation of p(r )  can be deduced by studying the ‘bare’ density 
pB(r) = po exp(-Pv(r)), which provides input values for the Gaussian parameters. 
For a-AgI and P-Ag,S we locate Gaussians at  the t-, M- and C-sites (see figure 1). 
The amplitudes and widths of the Gaussians are readjusted at  every iteration step, 
while their positions remain constant. On the contrary, in P-Ag,SI, appreciable shifts 
of the t- and M-sites have to be taken into account (Billi et  all988). The final solution 
for p ( ~ )  is obtained by iterating (10) up to self-consistency. 

I M C  t M  
Figure 2. Density profile of Ag+ ions in cu-AgI at T = 430 K .  The full curve 
corresponds to the density in the rigid lattice approximation obtained from ( lo) ,  the 
dotted curve to its Gaussian representation and the points to molecular dynamics 
calculations of Vashishta and Rahman (1978). The path along which the density is 
calculated is shown in the inset. Corrections due to host lattice deformations (see 
section 3) are shown for different parameters 7. Broken curve, 7 = i; chain curve, 
7 = 0.9. 

Results for the density p ( r )  of Ag+ ions in a-AgI at  T = 430 K are shown in 
figure 2, where we compare the density obtained from (10) (full curve) with the corre- 
sponding Gaussian approximation (dotted curve). These results show that the Gaus- 
sians provide a rather good representation of the density. Clearly, from figure 2, the 
maximum of p ( r )  occurs at  the t-sites, while the M-sites become saddle points and 
the C-sites points of local minima of p ( ~ ) .  In other words, we find that the main 
Ag+-diffusion paths are along t-M-t channels where the density is largest. This is in 
perfect qualitative agreement with molecular dynamics simulations by Vashishta and 
Rahman (1978) and with experiments by Cava et  a1 (1977). It should be emphasized 
that in a - Agl the final self-consistent density p ( r )  does not differ significantly from 
the bare density pB(T)  (Billi et  a1 1988). The situation is different for P-Ag,S since 
there are four cations in the BCC unit cell and cation-cation correlations are expected 
to be more important than in a-AgI. Indeed, while the bare densities of both sub- 
stances are quite similar, the Ag+-Ag+ interactions in P-Ag,S modify drastically the 
resulting density and lead to a new structure of the conduction paths (Roman and 
Dieterich 1986)-see also figure 5 later. 
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3. Effects of host-lattice deformations 

So far we have described a density-functional theory for superionic conductors within 
the rigid lattice approximation. In reality, however, the positions of anions are subject 
to  thermal fluctuations which are coupled to each other via pair-potentials Vxx and 
which are also coupled to the Ag+-motion. In order to  gain some insight into this 
problem we study the effect of cage deformations on the equilibrium density p(r)  of 
mobile ions by expanding it up to  second order in the anion displacements uk. To 
do this we consider a simplified model in which the anions are treated as Einstein 
oscillators. 

Let us start from the expression for the one-particle distribution function which is 
written as 

where ZN is the configurational integral and V the total potential energy of the system 
as function of cation positions T~ and displacements u k  of anions from their regular 
sites R,. In the case under consideration, the potential energy reads 

The first term in (14) accounts for the interaction between Agt ions and the second 
represents the Agt-X interaction, see equation (12). The last term represents a local 
harmonic potential acting on the anions, where cy is a parameter. 

By using (14), equation (13) can be cast into the more convenient form: 

where A = 
displacements u l , .  . . , uN. To solve (15) we consider a perturbation expansion of 
p ( r , u l ,  . . . ,uN)  up to second order around its value for uk = 0, which is justified if 
cy is sufficiently large 

and p( r ,  u l , .  , , , uN) denotes the density of cations 

(15) 

for given 

The derivatives in (16) can be computed from a corresponding expansion of (9). For 
the first and second derivatives of p(r)  we find 

(17) 
and 
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where p O ( r )  = P ( T ,  0) denotes the density for the rigid lattice case and V E V,,,. 
Note that in these equations the unknown quantities ( 8 p / 8 t h k ) O  and (82p/8uz)o 

are still implicit and must be calculated self-consistently. Physically, the first term 
in (17) represents the unscreened linear response of the system to the external per- 
turbation U’ = ,OVukvl while the second term accounts for the screening of V I  due 
to  Ag+-Ag+ correlations. Similarly, equation (18) can be regarded as the screened 
quadratic response to  anion displacements. In the latter we have considered derivatives 
(82p/8ukbul)0 for k = 1 since these are the only second-order terms which survive in 
(16) after integrating in (15). From that equation we now obtain 

P(T)  PO(T)(l+ f(u;)A(d> (19) 

with (U;) = Q/Pa and 

Obviously, A(T)  is periodic since the sum extends over all sites le of the anion lattice. 
Let us turn now to the problem of solving (17) and (18). Clearly, it is enough 

to consider only the displacement, along one given direction, of a single anion (thus 
keeping the others at their equilibrium positions), since host-lattice ions are assumed 
to vibrate isotropically and independently of each other. The complete expression (19) 
can be easily calculated from the solution of a single anion by straightforward sym- 
metry considerations. 

Next, it is convenient to write (17) and (18), respectively, as 

and 

where fl(r) = p o ( T ) - l 8 p / 8 u Z  and f2(T) = p o ( ~ ) - 1 8 2 p / 8 u z .  Here we have considered 
the displacement along the 2 direction of the anion at  the origin (Rk = 0). Note that 
f l ,  f2 are not periodic. An approximate solution for fl and f2 can be obtained by 
writing p O ( ~ )  in (21) and (22) as a sum of delta-functions, P ( T )  = CiZl p i 6 ( r  - T ~ ) .  

The amplitudes pi and positions ri can be deduced from the Gaussian representation 
of pO(v)  in section 2. Thus (21) is transformed into a system of N linear equations 
with N unknowns, fl(ri) .  In a final step one uses the values of f l (Ti )  on the right- 
hand side of (21) to get f l (T)  for arbitrary T .  The same procedure is then applied to 
solve (22) for f2(T) . 

N 

9.1. Results for a-AgI  

We have solved (21) and (22) numerically for a BCC lattice with (2 x 2 x 2) unit cubes, 
such that the iodine ion under consideration is surrounded by the 8 cubes. It turns out 
(see below) that such small system size suffices for our present purposes. Results for the 
first derivative of p O ( v ) ,  equation (21), obtained for CY - AgI at  T = 430 K are plotted 
in figure 3. The broken curve represents the first term in (21), while the full curve 
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Figure 4. Same as in figure 3 for the second derivative of p ( r )  with respect to U=. 
The broken curve is the bare result, (pav/au,)*  - pa2v /au i ,  and the full curve the 
self-consistent result, equation (22). 

gives the final self-consistent solution for fi(.). A drastic reduction of the external 
perturbation -pav/au, due to  screening effects is evident. For small distances the 
short-range repulsion from the displaced iodine ion leads to a pronounced depletion in 
the Ag+ density which is followed by an oscillatory behaviour at larger distances. The 
latter is reminiscent of the characteristic behaviour of the pair-correlation function 
between unlike ions in binary charged fluids (March and Tosi 1976). 

Using these results for fi(.), we have obtained f2(.), equation (22), as shown in 
figure 4. Clearly, the unscreened result f2(.) = (/3av/au,)2 - pd2v/8u2 overestimates 
the effect of anion vibrations. Thus, the inclusion of correlations between fluid particles 
becomes essential in the calculation of lattice deformation effects on the density of Ag+ 
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ions. These results show, on the other hand, that f 2 ( r )  vanishes sufficiently fast with 
distance P from the iodine ion and justifies a posteriori the use of small system size. 

The correction term in (19) is now obtained by a rapidly convergent summation 
over contributions from nearby anions. Figure 2 includes the final density for different 
choices of the anion mean-square displacement, which for convenience is written as 
(U;) = 7 ( ~ ; ) , , ~ .  Here ( u ; ) , , ~  = 0.099 A' denotes the experimental value deduced 
from measurements of the Debye-Waller factor by Cava et a1 (1977). The full curve 
7 = 0 corresponds to the rigid anion approximation discussed before. As seen from 
the figure, our model is not fully compatible with these experiments as it does not 
allow us to use 7 = 1. In fact, away from the t-sites this choice would imply the 
correction in (1) to be of order unity, which is definitely outside the range of validity 
of the expansion (16). This shortcoming of our model may ly in our assumption of a 
local harmonic potential acting on I- ions. This assumption is expected to introduce 
more severe constraints on the As+-distribution than one would have in the case 
of a complete lattice-dynamical model based on pair-wise forces. In our treatment 
we should therefore use (U;) < (u;)~,~,. In fact, using y = we obtain remarkable 
agreement with the MD studies by Vashishta and Rahman (1978). As is apparent from 
the figure, the lattice displacements tend to localize the Agt fluid around the t-sites 
and suppress the densities near M and C. Essentially, this is because uncorrelated, 
spherically symmetric displacements will, on average, reduce the effective free space 
available for the Agt ions, an effect which is larger near M and C than near t. 

3.2. Results f o r  P-Ag2S 
In a manner similar to that used for a-AgI, we have solved (21) and (22) for p- 
Ag,S within (2 x 2 x 2) unit cubes of the BCC lattice. This material is particularly 
interesting in the present context because experimental results at  the Agt-density at  
different temperatures are available. 

Calculations of the function A(T)  indicate that host-lattice displacements favour 
the Agt-occupancy around the t-sites, where the density has its maximum, as found 
for cr-AgI. In contrast to a-AgI, there is now a strong positive correction around the 
M-sites. Close to the C-sites A(r) remains negative. 

The final density p ( r )  in P-Ag2S is plotted in figure 5 for two different tempera- 
tures. While the density P ( T )  in the case of a rigid lattice tends to display a relative 
maximum around a C-site, with a small dimple between the C-sites and t-sites, the 
corrected density shows instead a local minimum at C. This result is in qualitative 
agreement with molecular dynamics simulations (Vashishta et a1 1985). It is apparent 
from figure 5(a), however, that already the density p O ( r )  calculated within the rigid 
lattice approximation overestimates the localization of Agt ions around the t-sites, 
as compared with molecular dynamics simulations. This result cannot be improved 
by simply taking into account host-lattice ion vibrations as independent oscillators, 
since the density becomes more localized around the t-sites as explained above (sub- 
section 3.1).  Nonetheless, the present approximation has the merit that it modifies 
the rigid-lattice density p O ( r )  such that the correct local structure of p ( ~ )  is obtained 
(see e.g. figure 5). 

These local effects can be more accurately appreciated in figure 6 where we have 
plotted the normalized values of p i ( T ) / p i ( T o ) ,  for i = t ,  M and C, as a function of 
temperature. We see that already p 0 ( r ) ,  for the rigid-lattice case, displays behaviours 
of pM(T) and p,(T) in qualitative agreement with molecular dynamics simulations 
(inset, figure 6). The quantity p,(T), however, shows an opposite trend compared 
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Figure 5. Density of A g t  ions in PAgzS at  different temperature3 with corrections 
due to host-lattice deformations, ( a )  T = 464 K and ( b )  598 K. In both cases the 
full curves correspond to p, ( r ) (y  = 0) and the broken curves to p ( r )  including 
deformation corrections with y = $. The points in ( a )  are from molecular dynamics 
calculations of Vashishta e t  a1 (1985). Here we have used (u$)cxp = 0.054 AZ for 
T = 464 K and 0.091 A for T = 598 K, from Cava et  al (1980). The path along 
which the density is calculated is shown in the inset of (a ) .  

0.6 I I 
450 500 550 600 

T(OK) 
Figure 6 .  Temperature dependence of the normalized A g t  density in P-AgZS. 
Plotted values pi(T)/pi(To) for i  = t (H), M ( 0 )  and C (A) with To = 464 K. The 
full symbols are from po(r ) (y  = 0) and the open symbols for p ( r )  with deformation 
corrections (7 = $). The curves are drawn as a guide. Inset: the molecular dynamics 
results of Vashishta et  al (1985). 

with the simulations. The inclusion of host-lattice vibrations improves the situation in 
the sense that its temperature dependence now becomes weaker. For p,(T) and p,(T) 
also a better agreement with the results of simulations is obtained after correcting for 
the host-lattice vibrations. 

4. Summary and concluding remarks 

In this work we use classical density-functional theory (CDFT) for calculating the one- 
particle denstiy p ( t )  of mobile ions in the superionic materials a-AgI and ,!?- Ag,S. In 
a first approximation, the counterions, which form a crystal structure, are assumed 
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to remain fixed at their lattice positions. Within this rigid-lattice approximation, 
the calculated density P ( T )  of Ag+ ions in a- AgI and P-Ag,S is in good agreement 
with molecular dynamics simulations and experiments for temperatures close to  the 
superionic transition temperature T,. It should be emphasized that the CDFT allows us 
to describe quantitatively the effect of increasing the strength of Agt-Ag+ correlations 
in these systems. In the case of a-AgI, with two Ag+ ions per unit cell, we find that 
Ag+-Ag+ correlations do not play an important role in determining the density profile, 
and P ( T )  is given essentially by the pot,ential U(.) due to  the interaction between unlike 
ions. Hcwever, in P-Ag,S where four Ag+ ions per unit cell are present, the shape of 
P ( T )  is qualitatively different from that obtained in a-AgI, although the bare potentials 
U(.) are similar in both substances. 

Although the rigid lattice approximation provides us with a simple and rather 
successful scheme to evaluate density profiles, its applicability appears to be limited to  
temperatures close to the transition temperature T,. The reason for this is expected to  
be the increasing importance of host-lattice deformations as the temperature is raised. 
In order to  take that aspect into account we treated a model where host-lattice ions 
are regarded as Einstein oscillators. Their mean-square displacement (U;) is treated 
as a parameter such that (U;) = ~ ( u ; ) , , ~ ,  where y is a constant independent of 
temperature. The temperature dependence of the calculated density profiles turns 
out to  be improved considerably as compared with the rigid lattice approximation. 
However, in order to  obtain the desired overall magnitude of the correction term in (l), 
we have to choose y 21 which means that ( u t )  has to be taken considerably smaller 
than the experimental value ( u ; ) , ~ ~ .  This deficiency may be due to our assumption 
of local restoring forces for the I- ions, as discussed in subsection 3.1. 

Nevertheless, one has to note that the unscreened response of the Agt system to 
host lattice deformations would overestimate the function A(.) (see equation (1)) by 
an order of magnitude and would thus lead to unphysical results. A careful treatment 
of screening effects, as provided by the CFDT, see equations (21) and (22), is essential 
to obtain the correct order of magnitude of the relative density change ~ ( U ~ ) A ( T )  . 
In that respect our present approach is to be regarded as satisfactory. 

The incorporation into the theory of the deformation effects discussed above pro- 
duces the desired result for a-AgI, where the bare density P ~ ( T )  is too large as com- 
pared with experiments and molecular dynamics simulations. For P-Ag,S the depar- 
ture of the calculated P ( T )  from the simulation results increases slightly. Nonetheless, 
the anion vibration effects considered here definitely reduce the discrepancy between 
theory and simulation even in P-Ag,S when one looks at  the local structure in P ( T )  

and at its temperature dependence. 
The present simplified treatment of host-lattice deformations should be comple- 

mented by including a kind of feedback mechanism by which Agt ions could react 
against the oscillations of host-lattice ions. The problem should then be treated as a 
two-component system in which the density of both components is obtained simulta- 
neously from a CDFT, similarly as currently done for example in the theory of freezing 
of molten salts. 
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